[최적화] Google OR-Tools Scheduling (1)Employee Scheduling
in Data on Optimization
Google OR-Tools Scheduling (1)Employee Scheduling 에 대한 간단한 정리
간호사 예약 문제
다음 예에서 병원 관리자는 다음 조건에 따라 3일 동안 4명의 간호사에 대한 일정을 만들어야 합니다.
- 각 날짜는 8시간 단위로 교대됩니다.
- 매일 각 교대근무는 한 명의 간호사에게 배정되고, 한 명의 간호사가 한번보다 많이 교대근무를 하지는 않는다.
- 각 간호사는 3일 동안 최소 두 번의 교대 근무에 배정됩니다.
변수만들기
교대근무 s가 d일차에 간호사 1명(n)에게 배정되는 경우 shifts[(n, d, s)]가 1이고, 그렇지 않으면 0
shifts = {}
for n in all_nurses:
for d in all_days:ㅁ
for s in all_shifts:
shifts[(n, d,
s)] = model.NewBoolVar('shift_n%id%is%i' % (n, d, s))
교대근무에 간호사 배정
- 각 하나의 교대근무는 하루에 한 명의 간호사에게 할당
- 각 간호사는 하루 교대근무 최대 한번 근무가 가능합니다.
각 하나의 교대근무는 하루에 한 명의 간호사에게 할당
for d in all_days:
for s in all_shifts:
model.AddExactlyOne(shifts[(n, d, s)] for n in all_nurses)
각 간호사는 하루 교대근무 최대 한번 근무가 가능
for n in all_nurses:
for d in all_days:
model.AddAtMostOne(shifts[(n, d, s)] for s in all_shifts)
교대 근무조를 균등하게 할당
최대한 간호사에게 고르게 교대 근무를 할당함.
3일동안 교대근무가 9회이므로 각 간호사 4명에게 교대 근무를 2개씩 할당. 그리고 남은 1개의 교대 근무는 어떤 간호사 1명에게 할당
각 간호사에게 최소 2번의 이동을 할당. model.Add(min_shifts_per_nurse <= sum(num_shifts_worked))
제약조건으로 가능
남은 1개의 추가 교대근무는 model.Add(sum(num_shifts_worked) <= max_shifts_per_nurse)
로 막으면 됨.
# Try to distribute the shifts evenly, so that each nurse works
# min_shifts_per_nurse shifts. If this is not possible, because the total
# number of shifts is not divisible by the number of nurses, some nurses will
# be assigned one more shift.
min_shifts_per_nurse = (num_shifts * num_days) // num_nurses
if num_shifts * num_days % num_nurses == 0:
max_shifts_per_nurse = min_shifts_per_nurse
else:
max_shifts_per_nurse = min_shifts_per_nurse + 1
for n in all_nurses:
shifts_worked = []
for d in all_days:
for s in all_shifts:
shifts_worked.append(shifts[(n, d, s)])
model.Add(min_shifts_per_nurse <= sum(shifts_worked))
model.Add(sum(shifts_worked) <= max_shifts_per_nurse)
솔버 매개변수 업데이트
solver = cp_model.CpSolver()
solver.parameters.linearization_level = 0
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
솔루션 콜백
class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, shifts, num_nurses, num_days, num_shifts, limit):
cp_model.CpSolverSolutionCallback.__init__(self)
self._shifts = shifts
self._num_nurses = num_nurses
self._num_days = num_days
self._num_shifts = num_shifts
self._solution_count = 0
self._solution_limit = limit
def on_solution_callback(self):
self._solution_count += 1
print('Solution %i' % self._solution_count)
for d in range(self._num_days):
print('Day %i' % d)
for n in range(self._num_nurses):
is_working = False
for s in range(self._num_shifts):
if self.Value(self._shifts[(n, d, s)]):
is_working = True
print(' Nurse %i works shift %i' % (n, s))
if not is_working:
print(' Nurse {} does not work'.format(n))
if self._solution_count >= self._solution_limit:
print('Stop search after %i solutions' % self._solution_limit)
self.StopSearch()
def solution_count(self):
return self._solution_count
# Display the first five solutions.
solution_limit = 5
solution_printer = NursesPartialSolutionPrinter(shifts, num_nurses,
num_days, num_shifts,
solution_limit)
전체 코드
"""Example of a simple nurse scheduling problem."""
from ortools.sat.python import cp_model
def main():
# Data.
num_nurses = 4
num_shifts = 3
num_days = 3
all_nurses = range(num_nurses)
all_shifts = range(num_shifts)
all_days = range(num_days)
# Creates the model.
model = cp_model.CpModel()
# Creates shift variables.
# shifts[(n, d, s)]: nurse 'n' works shift 's' on day 'd'.
shifts = {}
for n in all_nurses:
for d in all_days:
for s in all_shifts:
shifts[(n, d,
s)] = model.NewBoolVar('shift_n%id%is%i' % (n, d, s))
# Each shift is assigned to exactly one nurse in the schedule period.
for d in all_days:
for s in all_shifts:
model.AddExactlyOne(shifts[(n, d, s)] for n in all_nurses)
# Each nurse works at most one shift per day.
for n in all_nurses:
for d in all_days:
model.AddAtMostOne(shifts[(n, d, s)] for s in all_shifts)
# Try to distribute the shifts evenly, so that each nurse works
# min_shifts_per_nurse shifts. If this is not possible, because the total
# number of shifts is not divisible by the number of nurses, some nurses will
# be assigned one more shift.
min_shifts_per_nurse = (num_shifts * num_days) // num_nurses
if num_shifts * num_days % num_nurses == 0:
max_shifts_per_nurse = min_shifts_per_nurse
else:
max_shifts_per_nurse = min_shifts_per_nurse + 1
for n in all_nurses:
shifts_worked = []
for d in all_days:
for s in all_shifts:
shifts_worked.append(shifts[(n, d, s)])
model.Add(min_shifts_per_nurse <= sum(shifts_worked))
model.Add(sum(shifts_worked) <= max_shifts_per_nurse)
# Creates the solver and solve.
solver = cp_model.CpSolver()
solver.parameters.linearization_level = 0
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
class NursesPartialSolutionPrinter(cp_model.CpSolverSolutionCallback):
"""Print intermediate solutions."""
def __init__(self, shifts, num_nurses, num_days, num_shifts, limit):
cp_model.CpSolverSolutionCallback.__init__(self)
self._shifts = shifts
self._num_nurses = num_nurses
self._num_days = num_days
self._num_shifts = num_shifts
self._solution_count = 0
self._solution_limit = limit
def on_solution_callback(self):
self._solution_count += 1
print('Solution %i' % self._solution_count)
for d in range(self._num_days):
print('Day %i' % d)
for n in range(self._num_nurses):
is_working = False
for s in range(self._num_shifts):
if self.Value(self._shifts[(n, d, s)]):
is_working = True
print(' Nurse %i works shift %i' % (n, s))
if not is_working:
print(' Nurse {} does not work'.format(n))
if self._solution_count >= self._solution_limit:
print('Stop search after %i solutions' % self._solution_limit)
self.StopSearch()
def solution_count(self):
return self._solution_count
# Display the first five solutions.
solution_limit = 5
solution_printer = NursesPartialSolutionPrinter(shifts, num_nurses,
num_days, num_shifts,
solution_limit)
solver.Solve(model, solution_printer)
# Statistics.
print('\nStatistics')
print(' - conflicts : %i' % solver.NumConflicts())
print(' - branches : %i' % solver.NumBranches())
print(' - wall time : %f s' % solver.WallTime())
print(' - solutions found: %i' % solution_printer.solution_count())
if __name__ == '__main__':
main()