[최적화] Google OR-Tools Routing (4)Vehicle Routing with Pickups and Deliveries


Google OR-Tools Routing (4)Vehicle Routing with Pickups and Deliveries에 대한 간단한 정리


Vehicle Routing with Pickups and Deliveries(픽업 및 배달이 가능한 차량 경로 )

Create the data

  • 픽업, 배달 요청 쌍 목록
data['pickups_deliveries'] = [
    [1, 6],
    [2, 10],
    [4, 3],
    [5, 9],
    [7, 8],
    [15, 11],
    [13, 12],
    [16, 14],
]

픽업 및 배달 요청 정의

  • 픽업, 배달 요청 정의하기
for request in data['pickups_deliveries']:
    pickup_index = manager.NodeToIndex(request[0])
    delivery_index = manager.NodeToIndex(request[1])
    routing.AddPickupAndDelivery(pickup_index, delivery_index)
    routing.solver().Add(
        routing.VehicleVar(pickup_index) == routing.VehicleVar(
            delivery_index))
    routing.solver().Add(
        distance_dimension.CumulVar(pickup_index) <=
        distance_dimension.CumulVar(delivery_index))
  • 각 상품을 픽업하여 같은 차량으로 배달해야하는 요구사항 추가내용
routing.solver().Add(
            routing.VehicleVar(pickup_index) ==
            routing.VehicleVar(delivery_index))
  • 상품이 배송되기 전에 각 상품을 수령해야 한다는 요구사항 추가
  • 이를 위해서 상품의 “픽업위치에 대한 차량의 누적거리”는 “배송위치에서의 최대 누적거리” 여야함
routing.solver().Add(
            distance_dimension.CumulVar(pickup_index) <=
            distance_dimension.CumulVar(delivery_index))

프로그램 결과

Objective: 226116
Route for vehicle 0:
 0 ->  13 ->  15 ->  11 ->  12 -> 0
Distance of the route: 1552m

Route for vehicle 1:
 0 ->  5 ->  2 ->  10 ->  16 ->  14 ->  9 -> 0
Distance of the route: 2192m

Route for vehicle 2:
 0 ->  4 ->  3 -> 0
Distance of the route: 1392m

Route for vehicle 3:
 0 ->  7 ->  1 ->  6 ->  8 -> 0
Distance of the route: 1780m

Total Distance of all routes: 6916m

전체코드

"""Simple Pickup Delivery Problem (PDP)."""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data['distance_matrix'] = [
        [
            0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354,
            468, 776, 662
        ],
        [
            548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
            1016, 868, 1210
        ],
        [
            776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164,
            1130, 788, 1552, 754
        ],
        [
            696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
            1164, 560, 1358
        ],
        [
            582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
            1050, 674, 1244
        ],
        [
            274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628,
            514, 1050, 708
        ],
        [
            502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856,
            514, 1278, 480
        ],
        [
            194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320,
            662, 742, 856
        ],
        [
            308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662,
            320, 1084, 514
        ],
        [
            194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388,
            274, 810, 468
        ],
        [
            536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764,
            730, 388, 1152, 354
        ],
        [
            502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114,
            308, 650, 274, 844
        ],
        [
            388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194,
            536, 388, 730
        ],
        [
            354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0,
            342, 422, 536
        ],
        [
            468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536,
            342, 0, 764, 194
        ],
        [
            776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274,
            388, 422, 764, 0, 798
        ],
        [
            662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730,
            536, 194, 798, 0
        ],
    ]
    data['pickups_deliveries'] = [
        [1, 6],
        [2, 10],
        [4, 3],
        [5, 9],
        [7, 8],
        [15, 11],
        [13, 12],
        [16, 14],
    ]
    data['num_vehicles'] = 4
    data['depot'] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f'Objective: {solution.ObjectiveValue()}')
    total_distance = 0
    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
        route_distance = 0
        while not routing.IsEnd(index):
            plan_output += ' {} -> '.format(manager.IndexToNode(index))
            previous_index = index
            index = solution.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id)
        plan_output += '{}\n'.format(manager.IndexToNode(index))
        plan_output += 'Distance of the route: {}m\n'.format(route_distance)
        print(plan_output)
        total_distance += route_distance
    print('Total Distance of all routes: {}m'.format(total_distance))


def main():
    """Entry point of the program."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                           data['num_vehicles'], data['depot'])

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)


    # Define cost of each arc.
    def distance_callback(from_index, to_index):
        """Returns the manhattan distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data['distance_matrix'][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Distance constraint.
    dimension_name = 'Distance'
    routing.AddDimension(
        transit_callback_index,
        0,  # no slack
        3000,  # vehicle maximum travel distance
        True,  # start cumul to zero
        dimension_name)
    distance_dimension = routing.GetDimensionOrDie(dimension_name)
    distance_dimension.SetGlobalSpanCostCoefficient(100)

    # Define Transportation Requests.
    for request in data['pickups_deliveries']:
        pickup_index = manager.NodeToIndex(request[0])
        delivery_index = manager.NodeToIndex(request[1])
        routing.AddPickupAndDelivery(pickup_index, delivery_index)
        routing.solver().Add(
            routing.VehicleVar(pickup_index) == routing.VehicleVar(
                delivery_index))
        routing.solver().Add(
            distance_dimension.CumulVar(pickup_index) <=
            distance_dimension.CumulVar(delivery_index))

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PARALLEL_CHEAPEST_INSERTION)

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)


if __name__ == '__main__':
    main()

참고




© 2018. by statssy

Powered by statssy